Specific Heat
heat capacity (C) has units of J/K
specific heat capacity (c) has units of J/kg·K
U = c·m·∆T
U is energy in Joules to heat the material by ∆T
c is specific heat of the material in J/kg·K
m is mass in kg, ∆T is temperature change in ºC
Thermal properties of Water
specific heat of water is 4.186 kJ/kgC
specific heat of ice is 2.06 kJ/kgC
specific heat of steam is 2.1 kJ/kgK
heat of fusion of ice is 334 kJ/kg
heat of vaporization of water is 2256 kJ/kg
The triple point of water is at a temperature of 273.16K
(0.01 °C)
by convention, and at a pressure of 611.73 Pa
Specific Heat of seawater at 20ºC is 3993 J/KgK
Freezing point of seawater ice is −1.910 °C
Boiling point of seawater 100.56 °C
thermal conductivity of seawater is 0.6 W/m•K
Specific Heat of Water Versus Temperature
10ºC 4.1921 kJ/kgC
20ºC 4.1818 kJ/kgC
30ºC 4.1784 kJ/kgC
40ºC 4.1785 kJ/kgC
50ºC 4.1806 kJ/kgC
60ºC 4.1843 kJ/kgC
70ºC 4.1895 kJ/kgC
80ºC 4.1963 kJ/kgC
90ºC 4.2050 kJ/kgC
100ºC 4.2159 kJ/kgC
Water Ice Properties versus temperature
Temp density thermal conductivity specific heat
(ºC)(kg/m3) (W/m•K)(kJ/kgK)
0 916.2 2.22 2.050 or 0.033 lb/in³ or 57.08 lb/ft³
-5 917.5 2.25 2.027
-10 918.9 2.30 2.000
-15 919.4 2.34 1.972
-20 919.4 2.39 1.943
-25 919.6 2.45 1.913
-30 920.0 2.50 1.882
-35 920.4 2.57 1.851
-40 920.8 2.63 1.818
-50 921.6 2.76 1.751
-60 922.4 2.90 1.681
-70 923.3 3.05 1.609
-80 924.1 3.19 1.536
-90 924.9 3.34 1.463
-100 925.7 3.48 1.389
Specific Heat Table
specific heat Aluminum is 921 J/kgC
specific heat Antimony is 209 J/kgK
specific heat Barium is 201 J/kgC
specific heat Beryllium is 1825 J/kgC
specific heat Bismuth is 126 J/kgK
specific heat Brass is 402 J/kgC
specific heat Cadmium is 230 J/kgK
specific heat Calcium is 628 J/kgK
specific heat Carbon (graphite) is 710 J/kgC
specific heat Carbon Steel is 502 J/kgC
specific heat Cast Iron is 460 J/kgC
specific heat Chromium is 460 J/kgC
specific heat Cobalt is 419 J/kgC
specific heat concrete (1-2-4 mix) at 20 C: 880 J/kgC
specific heat Copper is 377 J/kgC
specific heat ethanol is 2300 J/kgC
specific heat glass at 20 C: 840 J/kgK
specific heat Glycerin liquid (25ºC) 2410 J/kg•K
specific heat Glycerin solid (6-11ºC) 1630 J/kg•K
specific heat gold is 126 J/kgC
specific heat graphite is 710 J/kgC
specific heat granite is 790 J/kgC
specific heat Iridium is 1298 J/kgK
specific heat Iron is 450 J/kgC
specific heat isoproponal is 2370 J/kgC
specific heat lead is 126 J/kgC
specific heat Magnesium 1047 J/(kgC)
specific heat Manganese is 478 J/kgC
specific heat Mercury is 140 J/kgC
specific heat methanol is 2470 J/kgC
specific heat Molybdenum is 277 J/kgC
specific heat Nickel is 502 J/kgC
specific heat Niobium is 268 J/kgC
specific heat Osmium is 130 J/kgK
specific heat Platinum is 126 J/kgK
specific heat Plutonium is 134 J/kgK
specific heat Potassium 754 J/kgC
specific heat Rhodium is 243 J/kgC
specific heat sand 800 J/kgC
specific heat Selenium is 322 J/kgC
specific heat Silicon 712 J/kgC
specific heat silver is 239 J/kgC
specific heat Sodium 1210 J/(kgC)
specific heat Tantalum is 138 J/kgC
specific heat Thorium is 126 J/kgK
specific heat Tin is 218 J/kgK
specific heat Titanium is 544 J/kgC
specific heat Uranium is 117 J/kgK
specific heat Vanadium is 486 J/kgC
specific heat water is 4186 J/kgC
specific heat water ice is 2060 J/kgC
specific heat water steam is 2100 J/kgK
specific heat Wood, balsa 2900 J/kgC
specific heat Wood, oak 2000 J/kgC
specific heat Wood, white pine 2500 J/kgC
specific heat Wrought Iron is 500 J/kgC
specific heat Zinc is 390 J/kgC
specific heat Zirconium is 270 J/kgC
Latent Heat of Fusion and Melting Point
Aluminum 398 kJ/kg (melts at 660ºC)
Antimony 161 kJ/kg (melts at 630ºC)
Beryllium 1356 kJ/kg (melts at 1285ºC)
Bismuth 51.9 kJ/kg (melts at 271ºC)
Brass xxx kJ/kg (melts at 930ºC)
Cadmium 55 kJ/kg (melts at 839ºC)
Cast Iron 272 kJ/kg (melts at 1175-1290ºC)
Chromium 331 kJ/kg (melts at 1857ºC)
Cobalt 25 kJ/kg (melts at 1495ºC)
Copper 205 kJ/kg (melts at 1083ºC)
Gold 63 kJ/kg (melts at 1063ºC)
Iridium 138 kJ/kg (melts at 2450ºC)
Iron 272 kJ/kg (melts at 1535ºC)
Lead 23 kJ/kg (melts at 328ºC)
Magnesium 368 kJ/kg (melts at 650ºC)
Manganese 268 kJ/kg (melts at 1245ºC)
Mercury 11.3 kJ/kg (melts at –38.9ºC)
Molybdenum 289 kJ/kg (melts at 2617ºC)
Nickel 297 kJ/kg (melts at 1453ºC)
Niobium 285 kJ/kg (melts at 2470ºC)
Osmium 142 kJ/kg (melts at 3025ºC)
Platinum 100 kJ/kg (melts at 1768ºC)
Plutonium 12.6 kJ/kg (melts at 640ºC)
Potassium 61 kJ/kg (melts at 63.3ºC)
Rhodium 167 kJ/kg (melts at 1966ºC)
Selenium 67 kJ/kg (melts at 217ºC)
Silicon 1926 kJ/kg (melts at 1411ºC)
Silver 111 kJ/kg (melts at 961ºC)
Sodium 113 kJ/kg (melts at 97.8ºC)
Stainless Steel xxx kJ/kg (melts at 1425-1540ºC)
Tantalum 172 kJ/kg (melts at 2980ºC)
Thorium 71 kJ/kg (melts at 1750ºC)
Tin 59 kJ/kg (melts at 232ºC)
Titanium 419 kJ/kg (melts at 1670ºC)
Tungsten 193 kJ/kg (melts at 3400ºC)
Uranium 50 kJ/kg (melts at 1132ºC)
Vanadium 410 kJ/kg (melts at 1900ºC)
Zinc 113 kJ/kg (melts at 420ºC)
Zirconium xxx kJ/kg (melts at 1854ºC)
Thermal Conductivity
P = K x ∆T x A / d
K is thermal conductivity in W/m•K
P is power in watts transferred through the material
K is thermal conductivity of the material in W/m•K
∆T is change in temperature across the material
A is cross-sectional area in m²
d is thickness in m
or P = ∆T/R
Thermal resistance R = d/(A•K) in K/W
A = cross-sectional area
d = thickness
conductance is 1/resistance
resistance is 1/conductance
Thermal resistance is in K/W
thermal conductance is in W/K (watts per degree)
Resistivity is 1/conductivity
Thermal resistance = (thermal resistivity)d/A
Thermal conductance = (thermal conductivity)A/d
A = cross-sectional area
d = thickness
Thermal Conductivity Table
thermal conductivity of Aluminum 250 W/m•K
thermal conductivity of Antimony is 18.5 W/m•K
thermal conductivity of Beryllium is 218 W/m•K
thermal conductivity of Brass is 109 W/m•K
thermal conductivity of Brick work 0.69 W/m•K
thermal conductivity of carbon, diamond is 470 W/m•K
thermal conductivity of carbon, graphite is 25-470 W/m•K
thermal conductivity of Copper is 401 W/m•K
thermal conductivity of Gold is 310 W/m•K
thermal conductivity of Granite is 2.2 W/m•K
thermal conductivity of Iron is 80 W/m•K
thermal conductivity of Lead is 35 W/m•K
thermal conductivity of Magnesium is 156 W/m•K
thermal conductivity of Mercury is 8 W/m•K (no convection)
thermal conductivity of Nickel is 91 W/m•K
thermal conductivity of Platinum is 70 W/m•K
thermal conductivity of Silver is 429 W/m•K
thermal conductivity of Stainless Steel is 16 W/m•K
thermal conductivity of Steel is 46 W/m•K
thermal conductivity of Tin is 67 W/m•K
thermal conductivity of titanium is 21.9 W/m•K
thermal conductivity of Zinc Zn is 116 W/m•K
Larger Table
Thermal Expansion
∆L/L = α∆T, α is linear thermal expansion coef
L = L₀(1 + α∆T)
∆A/A = 2α∆T
∆V/V = 3α∆T
∆V = αᵥV∆T, αᵥ is volume thermal expansion coef
linear thermal expansion coef Cu 17e-6 /K
linear thermal expansion coef Fe 11.8e-6 /K
linear thermal expansion coef Al 23.1e-6 /K
linear thermal expansion coef Pb 28.9e-6 /K
linear thermal expansion coef brass 19e-6 /K
linear thermal expansion coef silver is 18e-6 /K
linear thermal expansion coef Borosilicate glass 3.3e-6/K
linear thermal expansion coef soda lime glass 9e-6/K
linear thermal expansion coef window glass 9.5e-6/K
linear thermal expansion clear fused silica/quartz 5.5e-7/K
Volume thermal expansion coef Hg 0.000181/K
Volume thermal expansion coef glycerin 0.000615/K
Volume thermal expansion coef water 0.000214/K at 20ºC
Larger Table